The Essence of Generalized Algebraic Data Types

Filip Sieczkowski ¹ Sergei Stepanenko² Jonathan Sterling³ Lars Birkedal²

¹Heriot-Watt University

² Aarhus University

³University of Cambridge

June 9, 2024

GADTs allow us to express stronger invariants.

E.g., vectors without dependent types.

```
data Zero :: *
da ta Succ : : ∗ −> ∗
```

```
data VecNat :: * -> * where
  Nil : VecNat Zero
  Cons :: for all n. Nat \rightarrow VecNat n \rightarrow VecNat (Succ n)
```
Types are used as indices (which means that we need to reason about equalities of types).

- Extend relational reasoning techniques to languages with GADTs, to be able to show representation independence results.
	- Calculus for GADTs: $F^{-i}_{\omega\mu}$.
	- Semantic models for $\mathsf{F}_{\omega\mu}^{=i}.$
		- Unary model for semantic type safety.
		- Binary model for reasoning about contextual equivalences.


```
kinds \kappa ::= * | \kappa \Rightarrow \kappaconstructors c ::= \forall<sub>κ</sub> | \exists<sub>κ</sub> | \mu<sub>κ</sub> | \rightarrow | \times | + | unit | void
constraints \chi ::= \sigma \equiv_{\kappa} \tautypes \tau, \sigma \ ::= \alpha \mid \lambda \alpha :: \kappa, \tau \mid \sigma \tau \mid c \mid \chi \rightarrow \tau \mid \chi \times \tauvalues v ::= ...|\lambda \bullet e| \langle \bullet, v \rangleexpressions e ::= ...| abort • | v •
                                   | let (\bullet, x) = v in e
```
- Type constructors are built-in functions on types.
- Constraint types are 'assert's and 'assume's for type equalities.
- Constraints are 'proof-irrelevant'.

Reasoning about equalities I

Provability

Computational rules $(\beta, \eta$ for types), injectivity, congruence.

$$
\frac{c::(\kappa_i \Rightarrow)_i \kappa \qquad \Delta \mid \Phi \Vdash c(\sigma_i)_i \equiv_{\kappa} c(\tau_i)_i}{(\Delta \mid \Phi \Vdash \sigma_i \equiv_{\kappa_i} \tau_i)_i}
$$
\n
$$
\frac{\Delta \mid \Phi \Vdash \sigma_1 \times \tau_1 \equiv_{\ast} \sigma_2 \times \tau_2}{\Delta \mid \Phi \Vdash \tau_1 \equiv_{\ast} \tau_2}
$$

Reasoning about equalities I

Provability

Computational rules (β , η for types), injectivity, congruence.

$$
\frac{c::(\kappa_{i} \Rightarrow)_{i} \kappa \qquad \Delta \mid \Phi \Vdash c(\sigma_{i})_{i} \equiv_{\kappa} c(\tau_{i})_{i}}{(\Delta \mid \Phi \Vdash \sigma_{i} \equiv_{\kappa_{i}} \tau_{i})_{i}}
$$
\n
$$
\frac{\Delta \mid \Phi \Vdash \sigma_{1} \times \tau_{1} \equiv_{*} \sigma_{2} \times \tau_{2}}{\Delta \mid \Phi \Vdash \tau_{1} \equiv_{*} \tau_{2}}
$$

Discriminability

For impossible case elimination it is enough to look at the head symbols.

$$
\frac{c_1 \neq c_2 \qquad (\Delta \vdash c_i \overline{\tau}_i :: \kappa)_{i \in \{1,2\}}}{\Delta \Vdash c_1 \overline{\tau}_1 \#_{\kappa} c_2 \overline{\tau}_2}
$$
\n
$$
\frac{\Delta \vdash \tau_1 :: * \qquad \Delta \vdash \tau_2 :: * \qquad \Delta \vdash \sigma_1 :: * \qquad \Delta \vdash \sigma_2 :: *}{\Delta \Vdash \tau_1 + \sigma_1 \#_{*} \tau_2 \times \sigma_2}
$$

Elimination of impossible equalities.

$$
\frac{\Delta | \Phi \Vdash \sigma_1 \equiv_{\kappa} \sigma_2 \qquad \Delta \Vdash \sigma_1 \#_{\kappa} \sigma_2 \qquad \Delta \vdash \tau :: *}{\Delta | \Phi | \Gamma \vdash \text{abort} \bullet : \tau}
$$

```
natvec :: ∗ ⇒ ∗
natvec ≜
    \mu\varphi :: * \Rightarrow *. \lambda\alpha :: *.
    ((\alpha \equiv_{\ast} \text{void}) \times \text{unit})+(\mathbb{N} \times \exists \beta :: \ast. (\alpha \equiv_{\ast} (\beta + \text{unit})) \times (\varphi \beta))
```
• natvec is either unit (and has void as its index)

o or not unit (and the tail has a smaller index).

- Types are interpreted as sets of values. Constraints are interpreted as equalities of these sets.
- We can't validate injectivity rules, e.g., consider this instance:

 Δ | Φ ⊩ void $\times \tau_1 \equiv_*$ void $\times \tau_2$ Δ | Φ | $\tau_1 \equiv_* \tau_2$

If $\emptyset \times A = \emptyset \times B$, then it isn't necessarily true that $A = B$.

Our model: validates injectivity rules $+$ has a model with semantic relations

Idea: two stages.

- The first stage helps to reason about equalities.
- The second stage is for sets of values.
- Normal forms of types.
- Normalization (NbE).
- Syntactic equality of normal forms validates reduction rules for types.

$(\Delta \vdash \tau \equiv_{\kappa} \sigma \text{ constr})$ true \triangleq normal form of $\tau =$ normal form of σ

- We cannot use purely semantic predicates in ∀.
- Guarded recursion not only in case of recursive types, but also in ∀.
- We can interpret normal forms now, instead of arbitrary types.
- Syntactic equality of normal forms for constraints.

$$
\mathcal{R}(\forall \alpha :: *. \ \tau)(v) \triangleq \exists e. \ \ v = \Lambda. \ e \land \forall \mu \in \text{Neu}_*'. \dots \to \ \text{bwp}(\mathcal{R}(\text{eval}(\tau[\alpha \mapsto \mu])))(e) \mathcal{R}(\chi \times \nu)(v) \triangleq \exists v'.v = \langle \bullet, v' \rangle \land \chi \text{ true} \land \mathcal{R}(\nu)(v')
$$

Key observation

We can extend the syntax of normal forms at the base kind.

 φ : X $\varphi : \text{Neu}_*^{\Delta}$

Key observation

We can extend the syntax of normal forms at the base kind.

$$
\frac{\varphi:X}{\varphi:\operatorname{Neu}_*^{\Delta}}
$$

If X is instantiated with relations on syntactic values, we can prove relational properties. This allows us to combine syntactic reasoning (via normal forms for types) and semantic reasoning.

Key observation

We can extend the syntax of normal forms at the base kind.

$$
\frac{\varphi:X}{\varphi:\operatorname{Neu}_*^\Delta}
$$

If X is instantiated with relations on syntactic values, we can prove relational properties. This allows us to combine syntactic reasoning (via normal forms for types) and semantic reasoning.

Our model walks on a thin line in-between being too syntactical (no relational reasoning) and being too semantical (invalid):

- If the interpretation of equalities is too *semantical*, we cannot validate injectivity rules.
- If we use equalities of normal forms to interpret equalities, but use just syntactical normal forms, we cannot validate the conversion rules.

Contributions:

- Calculus for studies of GADTs.
- Novel approach to study semantics of feature-rich languages with syntactic constraints for types.
- Semantical models of a language that allows us to express GADTs:
	- Unary model that validates potential extensions for languages with GADTs.
	- Binary model that allows reasoning about representation independence.
- Coq mechanization.

and future:

- Extensions (general effects).
- Relational interpretation of ∀ quantified at higher kinds.

Placeholder before backup slides

$$
\begin{aligned}\n\llbracket * \rrbracket &\triangleq \text{Neu}_*\\
\llbracket \kappa_a \Rightarrow \kappa_r \rrbracket &\triangleq \llbracket \kappa_a \rrbracket \Rightarrow \llbracket \kappa_r \rrbracket\\
\llbracket \Delta \rrbracket &\triangleq \prod_{\alpha : : \kappa \in \Delta} \llbracket \kappa \rrbracket\n\end{aligned}
$$

$$
\begin{aligned}\n\text{reify}: \llbracket \kappa \rrbracket &\Rightarrow \mathrm{Nf}_{\kappa} \\
\text{reflect}: \mathrm{Neu}_{\kappa} &\Rightarrow \llbracket \kappa \rrbracket \\
\text{eval}: \mathrm{Ty}_{\kappa}^{\Delta} &\rightarrow \left(\llbracket \Delta \rrbracket \Rightarrow \llbracket \kappa \rrbracket \right)\n\end{aligned}
$$

The head function is now total! (We can eliminate the impossible case.)

```
vhead : nenatvec \rightarrow \mathbb{N}vhead x s \triangleqlet (*, ys) = xs in
    case unroll ys
     |\mathsf{inj}_1(\bullet,w). abort \bullet\vert inj_2 \langle y, \vert \rangle. y
```
Setup for the second stage

We used step-indexed logic for this version of the calculus. Language features (e.g., state) might require additional gadgets.

$$
\tau ::= \mathcal{T} | \mathit{Val} | \mathit{Expr} | \mathit{Prop} | 1 | \tau + \tau | \tau \times \tau | \tau \rightarrow \tau
$$
\n
$$
t, P ::= x | v | e | F(t_1, \ldots, t_n) |
$$
\n
$$
() | (t, t) | \pi_i t | \lambda x : \tau. t | t(t) |
$$
\n
$$
inl t | inr t | case(t, x.t, y.t) |
$$
\n
$$
False | \mathit{True} | t = t | P \Rightarrow P | P \land P | P \lor P |
$$
\n
$$
\exists x : \tau. P | \forall x : \tau. P | \triangleright P | \mu x : \tau. t | \ldots
$$
\n
$$
\frac{\Gamma, x : \tau \vdash t : \tau \quad x \text{ is guarded in } t}{\Gamma \vdash \mu x : \tau. t : \tau}
$$

$$
\llbracket \Phi \rrbracket_{\eta} \text{ true} \triangleq \forall \varphi \in \Phi. \llbracket \varphi \rrbracket_{\eta} \text{ true}
$$
\n
$$
\llbracket \Gamma \rrbracket_{\eta} \triangleq \{ \gamma \in \text{dom}(\Gamma) \to \text{Val} \mid \forall x \in \text{dom}(\Gamma). \text{ } \mathcal{R}(\text{eval}(\Gamma(x))(\eta))(\gamma(x)) \}
$$
\n
$$
\Delta \mid \Phi \mid \Gamma \models e : \tau \triangleq \forall \eta \in \llbracket \Delta \rrbracket(\cdot). \text{ } \text{good}(\eta) \to \llbracket \Phi \rrbracket_{\eta} \text{ true } \to \forall \gamma \in \llbracket \Gamma \rrbracket_{\eta} \to \text{wp}(\mathcal{R}(\text{eval}(\tau)(\eta)))(e)
$$

Injectivity of some constructors implies false. It's a known fact, but can come up as a surprise.

For any injective constructor $c :: (* \Rightarrow *) \Rightarrow *$ and type $\alpha :: *$ it is possible to derive a value of type void in System $F_{\omega}^{=i}$.

For any injective constructor $c :: (* \Rightarrow *) \Rightarrow *$ and type $\alpha :: *$ it is possible to derive a value of type void in System $F_{\omega}^{=i}$.

•
$$
\tau_c^{\text{loop}} \triangleq \exists \beta :: * \Rightarrow *.\ (c \ \beta \equiv_* \alpha) \times (\beta \ \alpha \rightarrow \text{void})
$$

$$
\bullet \ \ v^{\text{loop}} \triangleq \lambda x. \ \text{let } (\ast, (\bullet, y)) = x \text{ in } y \ (\text{pack } \langle \bullet, y \rangle)
$$

$$
\bullet \vdash v^{\text{loop}} : \tau_c^{\text{loop}}[(c \ (\lambda \alpha :: * . \ \tau_c^{\text{loop}}))/\alpha] \to \text{void},
$$

$$
\bullet\,\vdash v^\text{loop}\;(\text{pack}\,\langle\bullet,v^\text{loop}\rangle): \text{void}
$$

Lemma (Consistency)

A discriminable constraint is not provable in an empty context: in other words, $\emptyset \mid \emptyset \Vdash \tau_1 \equiv_{\kappa} \tau_2$ and $\emptyset \Vdash \tau_1 \#_{\kappa} \tau_2$ are contradictory.

- Consequence of the injectivity of reify.
- Allows to discharge impossible cases.

Lemma (Canonical form for arrows)

If v is a closed value of type τ and τ is provably equal to some arrow type in an empty context, then v is a lambda-abstraction with a well-typed body.

$$
(\emptyset | \emptyset | \mathbb{F} \tau \equiv_{*} (\tau_{1} \to \tau_{2})) \wedge (\emptyset | \emptyset | \Gamma \vdash v : \tau)
$$

$$
\implies (\exists x e. \ v = \lambda x. \ e \wedge \emptyset | \emptyset | \Gamma, x : \tau_{1} \vdash e : \tau_{2})
$$

References and concurrency.

The first stage stays the same, and the rest depends only on the logic used for defining \mathcal{R} .

The only requirements are that new effects should be expressed by type constructors, and that the ambient logic can express them.

```
data Red
data Black
data Tree a where
  Tree :: Node Black n a -> Tree a
data Node t n a where
  Nil :: Node Black Zero a
  BlackNode :: NodeH t0 t1 n a \rightarrow Node Black (Succ n) a
  RedNode :: NodeH Black Black n a -> Node Red n a
data NodeH \vert r n a = NodeH (Node \vert n a) a (Node r n a)
```
Stronger type invariants.

$$
Tm :: * \Rightarrow *
$$

\n
$$
Tm \stackrel{\triangle}{=} \mu \varphi :: * \Rightarrow *.\ \lambda \alpha :: *.
$$

\n
$$
\alpha + (\exists \beta, \gamma :: *.\ (\alpha \equiv_{*} (\beta \to \gamma)) \times (\beta \to \varphi \gamma))
$$

\n
$$
+ (\exists \beta :: *.\ \varphi (\beta \to \alpha) \times \varphi \beta)
$$

```
eval \cdot \forall \alpha \cdot \cdot * Tm \alpha \rightarrow \alphaeval ≜
    fix \lambda f. \Lambda. \lambda x.
     case unroll x\vert inj_1 y. y
     | inj_2 y. case y
          | inj<sub>1</sub> (*, (*, (•, g))). \lambda z. f * (g z)|\text{ inj}_2 \left( \ast, \langle g, x \rangle \right). (f * g) (f * x)
```
For any two bigger related contexts and arguments in this extended contexts, results are related after extension.

$$
\begin{aligned} \eta \mid \nu_1 \approx_* \nu_2 &\triangleq [\nu_1]_\eta = \nu_2 \\ \eta \mid \varphi_1 \approx_{\kappa_3 \Rightarrow \kappa_r} \varphi_2 &\triangleq \forall \Delta_1', \Delta_2', (\delta_1 : \mathsf{hom}_{\mathcal{K}}(\Delta_1', \Delta_1), \delta_2 : \mathsf{hom}_{\mathcal{K}}(\Delta_2', \Delta_2)), (\eta' : [\![\Delta_1']\!]^{\Delta_2'}), \mu_1, \mu_2. \\ &\qquad \qquad \left(\delta_2^* \eta = \lambda \kappa. \ \eta'(\delta_1(\boldsymbol{x})) \right) \rightarrow (\eta' \mid \mu_1 \approx_{\kappa_3} \mu_2) \rightarrow (\eta' \mid \varphi_1(\delta_1, \mu_1) \approx_{\kappa_r} \varphi_2(\delta_2, \mu_2)) \end{aligned}
$$

Lemma

If $\eta \mid \mu_1 \approx \mu_2$, then $\lbrack \lbrack \text{reify}(\mu_1) \rbrack_n = \mu_2$. If $\eta \mid \eta_1 \approx \eta_2$, then $\eta \mid [\![\tau]\!]_{\eta_1} \approx [\![\tau]\!]_{\eta_2}$.

 $i | \nu \approx_{\kappa} \nu$