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Recalling GADTs

GADTs allow us to express stronger invariants.

E.g., vectors without dependent types.

data Zero : : ∗
data Succ : : ∗ −> ∗

data VecNat : : ∗ −> ∗ where
N i l : : VecNat Zero
Cons : : f o r a l l n . Nat −> VecNat n −> VecNat ( Succ n )

Types are used as indices
(which means that we need to reason about equalities of types).
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This work

Extend relational reasoning techniques to languages with GADTs, to be able to show
representation independence results.

Calculus for GADTs: F=i
ωµ.

Semantic models for F=i
ωµ.

Unary model for semantic type safety.
Binary model for reasoning about contextual equivalences.
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F=i
ωµ

kinds κ ::= ∗ | κ ⇒ κ
constructors c ::= ∀κ | ∃κ | µκ |→| × | + | unit | void
constraints χ ::= σ≡κ τ
types τ, σ ::= α | λα :: κ. τ | σ τ | c | χ→ τ | χ× τ

values v ::= . . .
| λ•. e | ⟨•, v⟩

expressions e ::= . . .
| abort • | v •
| let (•, x) = v in e

Type constructors are built-in functions on types.

Constraint types are ‘assert’s and ‘assume’s for type equalities.

Constraints are ‘proof-irrelevant’.
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Reasoning about equalities I

Provability

Computational rules (β, η for types), injectivity, congruence.

c :: (κi ⇒)i κ ∆ | Φ ⊩ c (σi )i ≡κ c (τi )i
(∆ | Φ ⊩ σi ≡κi τi )i

∆ | Φ ⊩ σ1 × τ1 ≡∗ σ2 × τ2

∆ | Φ ⊩ τ1 ≡∗ τ2

Discriminability

For impossible case elimination it is enough to look at the head symbols.

c1 ̸= c2 (∆ ⊢ ci τ i :: κ)i∈{1,2}

∆ ⊩ c1 τ 1 #κ c2 τ 2

∆ ⊢ τ1 :: ∗ ∆ ⊢ τ2 :: ∗ ∆ ⊢ σ1 :: ∗ ∆ ⊢ σ2 :: ∗
∆ ⊩ τ1+σ1 #∗ τ2×σ2
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Reasoning about equalities II

Elimination of impossible equalities.

∆ | Φ ⊩ σ1 ≡κ σ2 ∆ ⊩ σ1 #κ σ2 ∆ ⊢ τ :: ∗
∆ | Φ | Γ ⊢ abort • : τ
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F=i
ωµ can represent GADTs

natvec :: ∗ ⇒ ∗
natvec ≜

µφ :: ∗ ⇒ ∗. λα :: ∗.
((α≡∗ void)× unit)
+(N×∃β :: ∗. (α≡∗ (β+unit))× (φ β))

natvec is either unit (and has void as its index)

or not unit (and the tail has a smaller index).
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(initial)
syntactic modelprogress +

preservation

allows proving free theorems
or representation independence
of different implementations

semantic model

KEY property: universe
of semantic relations

Our goal
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Näıve approach

Types are interpreted as sets of values. Constraints are interpreted as equalities of these
sets.

We can’t validate injectivity rules, e.g., consider this instance:

∆ | Φ ⊩ void× τ1 ≡∗ void× τ2

∆ | Φ ⊩ τ1 ≡∗ τ2

If ∅ × A = ∅ × B, then it isn’t necessarily true that A = B.
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Our model: validates injectivity rules + has a model with semantic relations

KEY idea: restrict
semantic relations

(initial)
syntactic model

progress and
preservation

KEY challenge:
conversion rules

Normalization
of types

semantic model

KEY property: universe
of semantic relations

Set-like models: known not to work (injectivity)
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High-level view of model construction

Idea: two stages.

The first stage helps to reason about equalities.

The second stage is for sets of values.

Filip Sieczkowski, Sergei Stepanenko, Jonathan Sterling, Lars Birkedal The Essence of Generalized Algebraic Data Types 11 / 16



First stage

Normal forms of types.

Normalization (NbE).

Syntactic equality of normal forms validates reduction rules for types.
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Modeling type equalities

(∆ ⊢ τ ≡κ σ constr) true ≜ normal form of τ = normal form of σ
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Second stage (unary model)

We cannot use purely semantic predicates in ∀.
Guarded recursion not only in case of recursive types, but also in ∀.
We can interpret normal forms now, instead of arbitrary types.

Syntactic equality of normal forms for constraints.

R(∀α :: ∗. τ)(v) ≜ ∃e. v = Λ. e ∧ ∀µ ∈ Neu·∗. · · · → ▷wp(R(eval(τ [α 7→ µ])))(e)

R(χ× ν)(v) ≜ ∃v ′.v = ⟨•, v ′⟩ ∧ χ true ∧R(ν)(v ′)
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Key observation

We can extend the syntax of normal forms at the base kind.

φ : X

φ : Neu∆∗

If X is instantiated with relations on syntactic values, we can prove relational properties.
This allows us to combine syntactic reasoning (via normal forms for types) and semantic
reasoning.

Our model walks on a thin line in-between being too syntactical (no relational reasoning) and
being too semantical (invalid):

If the interpretation of equalities is too semantical, we cannot validate injectivity rules.

If we use equalities of normal forms to interpret equalities, but use just syntactical normal
forms, we cannot validate the conversion rules.
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Contributions:

Calculus for studies of GADTs.

Novel approach to study semantics of feature-rich languages with syntactic constraints for
types.

Semantical models of a language that allows us to express GADTs:

Unary model that validates potential extensions for languages with GADTs.
Binary model that allows reasoning about representation independence.

Coq mechanization.

and future:

Extensions (general effects).

Relational interpretation of ∀ quantified at higher kinds.
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Placeholder before backup slides
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NbE

J∗K ≜ Neu∗

Jκa ⇒ κr K ≜ JκaK ⇒ Jκr K

J∆K ≜
∏

α::κ∈∆

JκK

reify : JκK ⇒ Nfκ

reflect : Neuκ ⇒ JκK

eval : Ty∆κ → (J∆K ⇒ JκK)
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Type-indexed vectors

The head function is now total! (We can eliminate the impossible case.)

vhead : nenatvec→N
vhead xs ≜

let (∗, ys) = xs in
case unroll ys
| inj1 (•,w). abort •
| inj2 ⟨y , ⟩. y
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Setup for the second stage

We used step-indexed logic for this version of the calculus.
Language features (e.g., state) might require additional gadgets.

τ ::= T | Val | Expr | Prop | 1 | τ + τ | τ × τ | τ → τ

t,P ::= x | v | e | F (t1, . . . , tn) |
() | (t, t) | πi t | λx : τ. t | t(t) |
inl t | inr t | case(t, x .t, y .t) |
False | True | t = t | P ⇒ P | P ∧ P | P ∨ P |
∃x : τ.P | ∀x : τ.P | ▷P | µ x : τ. t | . . .

Γ, x : τ ⊢ t : τ x is guarded in t

Γ ⊢ µ x : τ. t : τ
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Logical relation

JΦKη true ≜ ∀φ ∈ Φ. JφKη true

JΓKη ≜ {γ ∈ dom(Γ) → Val | ∀x ∈ dom(Γ). R(eval(Γ(x))(η))(γ(x))}
∆ | Φ | Γ |= e : τ ≜ ∀η ∈ J∆K(·). good(η) → JΦKη true → ∀γ ∈ JΓKη → wp(R(eval(τ)(η)))(e)
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Injectivity and Cantor’s paradox

Injectivity of some constructors implies false. It’s a known fact, but can come up as a surprise.

For any injective constructor c :: (∗ ⇒ ∗) ⇒ ∗ and type α :: ∗ it is possible to derive a value of
type void in System F=i

ω .
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Non-termination

For any injective constructor c :: (∗ ⇒ ∗) ⇒ ∗ and type α :: ∗ it is possible to derive a value of
type void in System F=i

ω .

τ loopc ≜ ∃β :: ∗ ⇒ ∗. (c β≡∗ α)× (β α→ void)

v loop ≜ λx . let (∗, (•, y)) = x in y (pack ⟨•, y⟩)
⊢ v loop : τ loopc [(c (λα :: ∗. τ loopc ))/α]→ void,

⊢ v loop (pack ⟨•, v loop⟩) : void
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Syntactic type-safety via NbE

Lemma (Consistency)

A discriminable constraint is not provable in an empty context: in other words, ∅ | ∅ ⊩ τ1 ≡κ τ2
and ∅ ⊩ τ1 #κ τ2 are contradictory.

Consequence of the injectivity of reify.

Allows to discharge impossible cases.

Lemma (Canonical form for arrows)

If v is a closed value of type τ and τ is provably equal to some arrow type in an empty context,
then v is a lambda-abstraction with a well-typed body.

(∅ | ∅ ⊩ τ ≡∗ (τ1 → τ2)) ∧ (∅ | ∅ | Γ ⊢ v : τ)

=⇒ (∃xe. v = λx . e ∧ ∅ | ∅ | Γ, x : τ1 ⊢ e : τ2)
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Orthogonal extensions

References and concurrency.

constructors c ::= · · · | ref
references ℓ ::= N
values v ::= · · · | ℓ
expressions e ::= · · · | fork e | alloc v | v := v | ! v

The first stage stays the same, and the rest depends only on the logic used for defining R.

The only requirements are that new effects should be expressed by type constructors, and that
the ambient logic can express them.
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Type-safe red-black trees

data Red
data Black
data Tree a where

Tree : : Node Black n a −> Tree a

data Node t n a where
N i l : : Node Black Zero a
BlackNode : : NodeH t0 t1 n a −> Node Black ( Succ n ) a
RedNode : : NodeH Black Black n a −> Node Red n a

data NodeH l r n a = NodeH (Node l n a ) a (Node r n a )

Stronger type invariants.
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Well-typed lambda terms

Tm :: ∗ ⇒ ∗
Tm ≜

µφ :: ∗ ⇒ ∗. λα :: ∗.
α+ (∃β, γ :: ∗. (α≡∗ (β→ γ))× (β→φ γ))
+ (∃β :: ∗. φ (β→α)×φ β)
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Well-typed lambda terms

eval : ∀α :: ∗. Tm α→α
eval ≜

fixλf . Λ. λx .
case unroll x
| inj1 y . y
| inj2 y . case y

| inj1 (∗, (∗, (•, g))). λz . f ∗ (g z)
| inj2 (∗, ⟨g , x⟩). (f ∗ g) (f ∗ x)
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Logical relation for denotations

For any two bigger related contexts and arguments in this extended contexts, results are related
after extension.

η | ν1 ≈∗ ν2 ≜ Jν1Kη = ν2

η | φ1 ≈κa⇒κr φ2 ≜ ∀∆′
1,∆

′
2, (δ1 : homK(∆

′
1,∆1), δ2 : homK(∆

′
2,∆2)), (η

′ : J∆′
1K

∆′
2), µ1, µ2.(

δ∗2η = λx . η′(δ1(x))
)
→

(
η′ | µ1 ≈κa µ2

)
→

(
η′ | φ1(δ1, µ1) ≈κr φ2(δ2, µ2)

)
Lemma

If η | µ1 ≈ µ2, then Jreify(µ1)Kη = µ2.
If η | η1 ≈ η2, then η | JτKη1 ≈ JτKη2 .

ı | ν ≈κ ν
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