
The Essence of Generalized Algebraic Data Types

Filip Sieczkowski 1 Sergei Stepanenko 2 Jonathan Sterling 3 Lars Birkedal 2

1Heriot-Watt University

2Aarhus University

3University of Cambridge

June 9, 2024

Filip Sieczkowski, Sergei Stepanenko, Jonathan Sterling, Lars Birkedal The Essence of Generalized Algebraic Data Types 1 / 16

Recalling GADTs

GADTs allow us to express stronger invariants.

E.g., vectors without dependent types.

data Zero : : ∗
data Succ : : ∗ −> ∗

data VecNat : : ∗ −> ∗ where
N i l : : VecNat Zero
Cons : : f o r a l l n . Nat −> VecNat n −> VecNat (Succ n)

Types are used as indices
(which means that we need to reason about equalities of types).

Filip Sieczkowski, Sergei Stepanenko, Jonathan Sterling, Lars Birkedal The Essence of Generalized Algebraic Data Types 2 / 16

This work

Extend relational reasoning techniques to languages with GADTs, to be able to show
representation independence results.

Calculus for GADTs: F=i
ωµ.

Semantic models for F=i
ωµ.

Unary model for semantic type safety.
Binary model for reasoning about contextual equivalences.

Filip Sieczkowski, Sergei Stepanenko, Jonathan Sterling, Lars Birkedal The Essence of Generalized Algebraic Data Types 3 / 16

F=i
ωµ

kinds κ ::= ∗ | κ ⇒ κ
constructors c ::= ∀κ | ∃κ | µκ |→| × | + | unit | void
constraints χ ::= σ≡κ τ
types τ, σ ::= α | λα :: κ. τ | σ τ | c | χ→ τ | χ× τ

values v ::= . . .
| λ•. e | ⟨•, v⟩

expressions e ::= . . .
| abort • | v •
| let (•, x) = v in e

Type constructors are built-in functions on types.

Constraint types are ‘assert’s and ‘assume’s for type equalities.

Constraints are ‘proof-irrelevant’.

Filip Sieczkowski, Sergei Stepanenko, Jonathan Sterling, Lars Birkedal The Essence of Generalized Algebraic Data Types 4 / 16

F=i
ωµ

kinds κ ::= ∗ | κ ⇒ κ
constructors c ::= ∀κ | ∃κ | µκ |→| × | + | unit | void
constraints χ ::= σ≡κ τ
types τ, σ ::= α | λα :: κ. τ | σ τ | c | χ→ τ | χ× τ

values v ::= . . .
| λ•. e | ⟨•, v⟩

expressions e ::= . . .
| abort • | v •
| let (•, x) = v in e

Type constructors are built-in functions on types.

Constraint types are ‘assert’s and ‘assume’s for type equalities.

Constraints are ‘proof-irrelevant’.

Filip Sieczkowski, Sergei Stepanenko, Jonathan Sterling, Lars Birkedal The Essence of Generalized Algebraic Data Types 4 / 16

Reasoning about equalities I

Provability

Computational rules (β, η for types), injectivity, congruence.

c :: (κi ⇒)i κ ∆ | Φ ⊩ c (σi)i ≡κ c (τi)i
(∆ | Φ ⊩ σi ≡κi τi)i

∆ | Φ ⊩ σ1 × τ1 ≡∗ σ2 × τ2

∆ | Φ ⊩ τ1 ≡∗ τ2

Discriminability

For impossible case elimination it is enough to look at the head symbols.

c1 ̸= c2 (∆ ⊢ ci τ i :: κ)i∈{1,2}

∆ ⊩ c1 τ 1 #κ c2 τ 2

∆ ⊢ τ1 :: ∗ ∆ ⊢ τ2 :: ∗ ∆ ⊢ σ1 :: ∗ ∆ ⊢ σ2 :: ∗
∆ ⊩ τ1+σ1 #∗ τ2×σ2

Filip Sieczkowski, Sergei Stepanenko, Jonathan Sterling, Lars Birkedal The Essence of Generalized Algebraic Data Types 5 / 16

Reasoning about equalities I

Provability

Computational rules (β, η for types), injectivity, congruence.

c :: (κi ⇒)i κ ∆ | Φ ⊩ c (σi)i ≡κ c (τi)i
(∆ | Φ ⊩ σi ≡κi τi)i

∆ | Φ ⊩ σ1 × τ1 ≡∗ σ2 × τ2

∆ | Φ ⊩ τ1 ≡∗ τ2

Discriminability

For impossible case elimination it is enough to look at the head symbols.

c1 ̸= c2 (∆ ⊢ ci τ i :: κ)i∈{1,2}

∆ ⊩ c1 τ 1 #κ c2 τ 2

∆ ⊢ τ1 :: ∗ ∆ ⊢ τ2 :: ∗ ∆ ⊢ σ1 :: ∗ ∆ ⊢ σ2 :: ∗
∆ ⊩ τ1+σ1 #∗ τ2×σ2

Filip Sieczkowski, Sergei Stepanenko, Jonathan Sterling, Lars Birkedal The Essence of Generalized Algebraic Data Types 5 / 16

Reasoning about equalities II

Elimination of impossible equalities.

∆ | Φ ⊩ σ1 ≡κ σ2 ∆ ⊩ σ1 #κ σ2 ∆ ⊢ τ :: ∗
∆ | Φ | Γ ⊢ abort • : τ

Filip Sieczkowski, Sergei Stepanenko, Jonathan Sterling, Lars Birkedal The Essence of Generalized Algebraic Data Types 6 / 16

F=i
ωµ can represent GADTs

natvec :: ∗ ⇒ ∗
natvec ≜

µφ :: ∗ ⇒ ∗. λα :: ∗.
((α≡∗ void)× unit)
+(N×∃β :: ∗. (α≡∗ (β+unit))× (φ β))

natvec is either unit (and has void as its index)

or not unit (and the tail has a smaller index).

Filip Sieczkowski, Sergei Stepanenko, Jonathan Sterling, Lars Birkedal The Essence of Generalized Algebraic Data Types 7 / 16

(initial)
syntactic modelprogress +

preservation

allows proving free theorems
or representation independence
of different implementations

semantic model

KEY property: universe
of semantic relations

Our goal

Filip Sieczkowski, Sergei Stepanenko, Jonathan Sterling, Lars Birkedal The Essence of Generalized Algebraic Data Types 8 / 16

Näıve approach

Types are interpreted as sets of values. Constraints are interpreted as equalities of these
sets.

We can’t validate injectivity rules, e.g., consider this instance:

∆ | Φ ⊩ void× τ1 ≡∗ void× τ2

∆ | Φ ⊩ τ1 ≡∗ τ2

If ∅ × A = ∅ × B, then it isn’t necessarily true that A = B.

Filip Sieczkowski, Sergei Stepanenko, Jonathan Sterling, Lars Birkedal The Essence of Generalized Algebraic Data Types 9 / 16

Our model: validates injectivity rules + has a model with semantic relations

KEY idea: restrict
semantic relations

(initial)
syntactic model

progress and
preservation

KEY challenge:
conversion rules

Normalization
of types

semantic model

KEY property: universe
of semantic relations

Set-like models: known not to work (injectivity)

Filip Sieczkowski, Sergei Stepanenko, Jonathan Sterling, Lars Birkedal The Essence of Generalized Algebraic Data Types 10 / 16

Our model: validates injectivity rules + has a model with semantic relations

KEY idea: restrict
semantic relations

(initial)
syntactic model

progress and
preservation

KEY challenge:
conversion rules

Normalization
of types

semantic model

KEY property: universe
of semantic relations

Set-like models: known not to work (injectivity)

Filip Sieczkowski, Sergei Stepanenko, Jonathan Sterling, Lars Birkedal The Essence of Generalized Algebraic Data Types 10 / 16

Our model: validates injectivity rules + has a model with semantic relations

KEY idea: restrict
semantic relations

(initial)
syntactic model

progress and
preservation

KEY challenge:
conversion rules

Normalization
of types

semantic model

KEY property: universe
of semantic relations

Set-like models: known not to work (injectivity)

Filip Sieczkowski, Sergei Stepanenko, Jonathan Sterling, Lars Birkedal The Essence of Generalized Algebraic Data Types 10 / 16

Our model: validates injectivity rules + has a model with semantic relations

KEY idea: restrict
semantic relations

(initial)
syntactic model

progress and
preservation

KEY challenge:
conversion rules

Normalization
of types

semantic model

KEY property: universe
of semantic relations

Set-like models: known not to work (injectivity)

Filip Sieczkowski, Sergei Stepanenko, Jonathan Sterling, Lars Birkedal The Essence of Generalized Algebraic Data Types 10 / 16

Our model: validates injectivity rules + has a model with semantic relations

KEY idea: restrict
semantic relations

(initial)
syntactic model

progress and
preservation

KEY challenge:
conversion rules

Normalization
of types

semantic model

KEY property: universe
of semantic relations

Set-like models: known not to work (injectivity)

Filip Sieczkowski, Sergei Stepanenko, Jonathan Sterling, Lars Birkedal The Essence of Generalized Algebraic Data Types 10 / 16

High-level view of model construction

Idea: two stages.

The first stage helps to reason about equalities.

The second stage is for sets of values.

Filip Sieczkowski, Sergei Stepanenko, Jonathan Sterling, Lars Birkedal The Essence of Generalized Algebraic Data Types 11 / 16

First stage

Normal forms of types.

Normalization (NbE).

Syntactic equality of normal forms validates reduction rules for types.

Filip Sieczkowski, Sergei Stepanenko, Jonathan Sterling, Lars Birkedal The Essence of Generalized Algebraic Data Types 12 / 16

Modeling type equalities

(∆ ⊢ τ ≡κ σ constr) true ≜ normal form of τ = normal form of σ

Filip Sieczkowski, Sergei Stepanenko, Jonathan Sterling, Lars Birkedal The Essence of Generalized Algebraic Data Types 13 / 16

Second stage (unary model)

We cannot use purely semantic predicates in ∀.
Guarded recursion not only in case of recursive types, but also in ∀.
We can interpret normal forms now, instead of arbitrary types.

Syntactic equality of normal forms for constraints.

R(∀α :: ∗. τ)(v) ≜ ∃e. v = Λ. e ∧ ∀µ ∈ Neu·∗. · · · → ▷wp(R(eval(τ [α 7→ µ])))(e)

R(χ× ν)(v) ≜ ∃v ′.v = ⟨•, v ′⟩ ∧ χ true ∧R(ν)(v ′)

Filip Sieczkowski, Sergei Stepanenko, Jonathan Sterling, Lars Birkedal The Essence of Generalized Algebraic Data Types 14 / 16

Key observation

We can extend the syntax of normal forms at the base kind.

φ : X

φ : Neu∆∗

If X is instantiated with relations on syntactic values, we can prove relational properties.
This allows us to combine syntactic reasoning (via normal forms for types) and semantic
reasoning.

Our model walks on a thin line in-between being too syntactical (no relational reasoning) and
being too semantical (invalid):

If the interpretation of equalities is too semantical, we cannot validate injectivity rules.

If we use equalities of normal forms to interpret equalities, but use just syntactical normal
forms, we cannot validate the conversion rules.

Filip Sieczkowski, Sergei Stepanenko, Jonathan Sterling, Lars Birkedal The Essence of Generalized Algebraic Data Types 15 / 16

Key observation

We can extend the syntax of normal forms at the base kind.

φ : X

φ : Neu∆∗

If X is instantiated with relations on syntactic values, we can prove relational properties.
This allows us to combine syntactic reasoning (via normal forms for types) and semantic
reasoning.

Our model walks on a thin line in-between being too syntactical (no relational reasoning) and
being too semantical (invalid):

If the interpretation of equalities is too semantical, we cannot validate injectivity rules.

If we use equalities of normal forms to interpret equalities, but use just syntactical normal
forms, we cannot validate the conversion rules.

Filip Sieczkowski, Sergei Stepanenko, Jonathan Sterling, Lars Birkedal The Essence of Generalized Algebraic Data Types 15 / 16

Key observation

We can extend the syntax of normal forms at the base kind.

φ : X

φ : Neu∆∗

If X is instantiated with relations on syntactic values, we can prove relational properties.
This allows us to combine syntactic reasoning (via normal forms for types) and semantic
reasoning.

Our model walks on a thin line in-between being too syntactical (no relational reasoning) and
being too semantical (invalid):

If the interpretation of equalities is too semantical, we cannot validate injectivity rules.

If we use equalities of normal forms to interpret equalities, but use just syntactical normal
forms, we cannot validate the conversion rules.

Filip Sieczkowski, Sergei Stepanenko, Jonathan Sterling, Lars Birkedal The Essence of Generalized Algebraic Data Types 15 / 16

Contributions:

Calculus for studies of GADTs.

Novel approach to study semantics of feature-rich languages with syntactic constraints for
types.

Semantical models of a language that allows us to express GADTs:

Unary model that validates potential extensions for languages with GADTs.
Binary model that allows reasoning about representation independence.

Coq mechanization.

and future:

Extensions (general effects).

Relational interpretation of ∀ quantified at higher kinds.

Filip Sieczkowski, Sergei Stepanenko, Jonathan Sterling, Lars Birkedal The Essence of Generalized Algebraic Data Types 16 / 16

Placeholder before backup slides

Filip Sieczkowski, Sergei Stepanenko, Jonathan Sterling, Lars Birkedal The Essence of Generalized Algebraic Data Types 17 / 16

NbE

J∗K ≜ Neu∗

Jκa ⇒ κr K ≜ JκaK ⇒ Jκr K

J∆K ≜
∏

α::κ∈∆

JκK

reify : JκK ⇒ Nfκ

reflect : Neuκ ⇒ JκK

eval : Ty∆κ → (J∆K ⇒ JκK)

Filip Sieczkowski, Sergei Stepanenko, Jonathan Sterling, Lars Birkedal The Essence of Generalized Algebraic Data Types 18 / 16

Type-indexed vectors

The head function is now total! (We can eliminate the impossible case.)

vhead : nenatvec→N
vhead xs ≜

let (∗, ys) = xs in
case unroll ys
| inj1 (•,w). abort •
| inj2 ⟨y , ⟩. y

Filip Sieczkowski, Sergei Stepanenko, Jonathan Sterling, Lars Birkedal The Essence of Generalized Algebraic Data Types 19 / 16

Setup for the second stage

We used step-indexed logic for this version of the calculus.
Language features (e.g., state) might require additional gadgets.

τ ::= T | Val | Expr | Prop | 1 | τ + τ | τ × τ | τ → τ

t,P ::= x | v | e | F (t1, . . . , tn) |
() | (t, t) | πi t | λx : τ. t | t(t) |
inl t | inr t | case(t, x .t, y .t) |
False | True | t = t | P ⇒ P | P ∧ P | P ∨ P |
∃x : τ.P | ∀x : τ.P | ▷P | µ x : τ. t | . . .

Γ, x : τ ⊢ t : τ x is guarded in t

Γ ⊢ µ x : τ. t : τ

Filip Sieczkowski, Sergei Stepanenko, Jonathan Sterling, Lars Birkedal The Essence of Generalized Algebraic Data Types 20 / 16

Logical relation

JΦKη true ≜ ∀φ ∈ Φ. JφKη true

JΓKη ≜ {γ ∈ dom(Γ) → Val | ∀x ∈ dom(Γ). R(eval(Γ(x))(η))(γ(x))}
∆ | Φ | Γ |= e : τ ≜ ∀η ∈ J∆K(·). good(η) → JΦKη true → ∀γ ∈ JΓKη → wp(R(eval(τ)(η)))(e)

Filip Sieczkowski, Sergei Stepanenko, Jonathan Sterling, Lars Birkedal The Essence of Generalized Algebraic Data Types 21 / 16

Injectivity and Cantor’s paradox

Injectivity of some constructors implies false. It’s a known fact, but can come up as a surprise.

For any injective constructor c :: (∗ ⇒ ∗) ⇒ ∗ and type α :: ∗ it is possible to derive a value of
type void in System F=i

ω .

Filip Sieczkowski, Sergei Stepanenko, Jonathan Sterling, Lars Birkedal The Essence of Generalized Algebraic Data Types 22 / 16

Non-termination

For any injective constructor c :: (∗ ⇒ ∗) ⇒ ∗ and type α :: ∗ it is possible to derive a value of
type void in System F=i

ω .

τ loopc ≜ ∃β :: ∗ ⇒ ∗. (c β≡∗ α)× (β α→ void)

v loop ≜ λx . let (∗, (•, y)) = x in y (pack ⟨•, y⟩)
⊢ v loop : τ loopc [(c (λα :: ∗. τ loopc))/α]→ void,

⊢ v loop (pack ⟨•, v loop⟩) : void

Filip Sieczkowski, Sergei Stepanenko, Jonathan Sterling, Lars Birkedal The Essence of Generalized Algebraic Data Types 23 / 16

Syntactic type-safety via NbE

Lemma (Consistency)

A discriminable constraint is not provable in an empty context: in other words, ∅ | ∅ ⊩ τ1 ≡κ τ2
and ∅ ⊩ τ1 #κ τ2 are contradictory.

Consequence of the injectivity of reify.

Allows to discharge impossible cases.

Lemma (Canonical form for arrows)

If v is a closed value of type τ and τ is provably equal to some arrow type in an empty context,
then v is a lambda-abstraction with a well-typed body.

(∅ | ∅ ⊩ τ ≡∗ (τ1 → τ2)) ∧ (∅ | ∅ | Γ ⊢ v : τ)

=⇒ (∃xe. v = λx . e ∧ ∅ | ∅ | Γ, x : τ1 ⊢ e : τ2)

Filip Sieczkowski, Sergei Stepanenko, Jonathan Sterling, Lars Birkedal The Essence of Generalized Algebraic Data Types 24 / 16

Orthogonal extensions

References and concurrency.

constructors c ::= · · · | ref
references ℓ ::= N
values v ::= · · · | ℓ
expressions e ::= · · · | fork e | alloc v | v := v | ! v

The first stage stays the same, and the rest depends only on the logic used for defining R.

The only requirements are that new effects should be expressed by type constructors, and that
the ambient logic can express them.

Filip Sieczkowski, Sergei Stepanenko, Jonathan Sterling, Lars Birkedal The Essence of Generalized Algebraic Data Types 25 / 16

Type-safe red-black trees

data Red
data Black
data Tree a where

Tree : : Node Black n a −> Tree a

data Node t n a where
N i l : : Node Black Zero a
BlackNode : : NodeH t0 t1 n a −> Node Black (Succ n) a
RedNode : : NodeH Black Black n a −> Node Red n a

data NodeH l r n a = NodeH (Node l n a) a (Node r n a)

Stronger type invariants.

Filip Sieczkowski, Sergei Stepanenko, Jonathan Sterling, Lars Birkedal The Essence of Generalized Algebraic Data Types 26 / 16

Well-typed lambda terms

Tm :: ∗ ⇒ ∗
Tm ≜

µφ :: ∗ ⇒ ∗. λα :: ∗.
α+ (∃β, γ :: ∗. (α≡∗ (β→ γ))× (β→φ γ))
+ (∃β :: ∗. φ (β→α)×φ β)

Filip Sieczkowski, Sergei Stepanenko, Jonathan Sterling, Lars Birkedal The Essence of Generalized Algebraic Data Types 27 / 16

Well-typed lambda terms

eval : ∀α :: ∗. Tm α→α
eval ≜

fixλf . Λ. λx .
case unroll x
| inj1 y . y
| inj2 y . case y

| inj1 (∗, (∗, (•, g))). λz . f ∗ (g z)
| inj2 (∗, ⟨g , x⟩). (f ∗ g) (f ∗ x)

Filip Sieczkowski, Sergei Stepanenko, Jonathan Sterling, Lars Birkedal The Essence of Generalized Algebraic Data Types 28 / 16

Logical relation for denotations

For any two bigger related contexts and arguments in this extended contexts, results are related
after extension.

η | ν1 ≈∗ ν2 ≜ Jν1Kη = ν2

η | φ1 ≈κa⇒κr φ2 ≜ ∀∆′
1,∆

′
2, (δ1 : homK(∆

′
1,∆1), δ2 : homK(∆

′
2,∆2)), (η

′ : J∆′
1K

∆′
2), µ1, µ2.(

δ∗2η = λx . η′(δ1(x))
)
→

(
η′ | µ1 ≈κa µ2

)
→

(
η′ | φ1(δ1, µ1) ≈κr φ2(δ2, µ2)

)
Lemma

If η | µ1 ≈ µ2, then Jreify(µ1)Kη = µ2.
If η | η1 ≈ η2, then η | JτKη1 ≈ JτKη2 .

ı | ν ≈κ ν

Filip Sieczkowski, Sergei Stepanenko, Jonathan Sterling, Lars Birkedal The Essence of Generalized Algebraic Data Types 29 / 16

	Motivation
	Language
	Semantics
	Conclusion
	Appendix

